Part Number Hot Search : 
XXXXXXBG 4VHC2 F1535A IT130 B7730 CPC1973Y 2SA1266O 0515X
Product Description
Full Text Search
 

To Download 5SNA1200E2501 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 VCE IC
= =
2500 V 1200 A
ABB HiPakTM IGBT Module
5SNA 1200E250100
Doc. No. 5SYA 1557-02 July 04
* Low-loss, rugged SPT chip-set * Smooth switching SPT chip-set for good EMC * Industry standard package * High power density * AlSiC base-plate for high power cycling capability * AlN substrate for low thermal resistance Maximum rated values
Parameter Collector-emitter voltage DC collector current Peak collector current Gate-emitter voltage Total power dissipation DC forward current Peak forward current Surge current IGBT short circuit SOA Isolation voltage Junction temperature Junction operating temperature Case temperature Storage temperature Mounting torques
1) 2) 2)
1)
Symbol VCES IC ICM VGES Ptot IF IFRM IFSM tpsc Visol Tvj Tvj(op) Tc Tstg M1 M2 M3
Conditions VGE = 0 V Tc = 80 C tp = 1 ms, Tc = 80 C
min
max 2500 1200 2400
Unit V A A V W A A A s V C C C C Nm
-20 Tc = 25 C, per switch (IGBT)
20 11000 1200 2400
VR = 0 V, Tvj = 125 C, tp = 10 ms, half-sinewave VCC = 1900 V, VCEM CHIP 2500 V VGE 15 V, Tvj 125 C 1 min, f = 50 Hz -40 -40 -40 Base-heatsink, M6 screws Main terminals, M8 screws Auxiliary terminals, M4 screws 4 8 2
11000 10 5000 150 125 125 125 6 10 3
Maximum rated values indicate limits beyond which damage to the device may occur per IEC 60747 For detailed mounting instructions refer to ABB Document No. 5SYA2039
ABB Switzerland Ltd, Semiconductors reserves the right to change specifications without notice.
5SNA 1200E250100
IGBT characteristic values
Parameter Collector (-emitter) breakdown voltage Collector-emitter 4) saturation voltage Collector cut-off current Gate leakage current Gate-emitter threshold voltage Gate charge Input capacitance Output capacitance Reverse transfer capacitance Turn-on delay time Rise time Turn-off delay time Fall time
3)
Symbol V(BR)CES VCE sat ICES IGES VGE(TO) Qge Cies Coes Cres td(on) tr td(off) tf
Conditions VGE = 0 V, IC = 10 mA, Tvj = 25 C IC = 1200 A, VGE = 15 V VCE = 2500 V, VGE = 0 V Tvj = 25 C Tvj = 125 C Tvj = 25 C Tvj = 125 C
min 2500 2.2 2.8
typ
max
Unit V
2.5 3.1 60
2.9 3.4 12 120 500 7.5
V V mA mA nA V C
VCE = 0 V, VGE = 20 V, Tvj = 125 C IC = 240 mA, VCE = VGE, Tvj = 25 C IC = 1200 A, VCE = 1250 V, VGE = -15 V .. 15 V VCE = 25 V, VGE = 0 V, f = 1 MHz, Tvj = 25 C VCC = 1250 V, IC = 1200 A, RG = 1.5 , VGE = 15 V, L = 100 nH, inductive load VCC = 1250 V, IC = 1200 A, RG = 1.5 , VGE = 15 V, L = 100 nH, inductive load VCC = 1250 V, IC = 1200 A, VGE = 15 V, RG = 1.5 , L = 100 nH, inductive load VCC = 1250 V, IC = 1200 A, VGE = 15 V, RG = 1.5 , L = 100 nH, inductive load Tvj = 25 C Tvj = 125 C Tvj = 25 C Tvj = 125 C Tvj = 25 C Tvj = 125 C Tvj = 25 C Tvj = 125 C Tvj = 25 C Tvj = 125 C Tvj = 25 C Tvj = 125 C
-500 5 12.2 186 13.7 2.98 375 365 240 250 875 980 300 345 820
nF
ns ns ns ns
Turn-on switching energy
Eon
mJ 1150 980 mJ 1250 5800 10 A nH m
Turn-off switching energy Short circuit current Module stray inductance Resistance, terminal-chip
3) 4)
Eoff ISC L CE RCC'+EE'
tpsc 10 s, VGE = 15 V, Tvj = 125 C, VCC = 1900 V, VCEM CHIP 2500 V TC = 25 C TC = 125 C
0.06 0.085
Characteristic values according to IEC 60747 - 9 Collector-emitter saturation voltage is given at chip level
ABB Switzerland Ltd, Semiconductors reserves the right to change specifications without notice.
Doc. No. 5SYA 1557-02 July 04 page 2 of 9
5SNA 1200E250100
Diode characteristic values
Parameter Forward voltage
6)
5)
Symbol VF Irr Qrr trr Erec
Conditions IF = 1200 A Tvj = 25 C Tvj = 125 C Tvj = 25 C VCC = 1250 V, IF = 1200 A, VGE = 15 V, RG = 1.5 L = 100 nH inductive load Tvj = 125 C Tvj = 25 C Tvj = 125 C Tvj = 25 C Tvj = 125 C Tvj = 25 C Tvj = 125 C
min 1.5 1.4
typ 1.75 1.8 965 1180 680 1150 1250 1710 580 960
max 2.0 2.0
Unit V A C ns mJ
Reverse recovery current Recovered charge Reverse recovery time Reverse recovery energy
5) 6)
Characteristic values according to IEC 60747 - 2 Forward voltage is given at chip level
Thermal properties
Parameter IGBT thermal resistance junction to case Diode thermal resistance junction to case Thermal resistance case to heatsink
2) 2)
Symbol Rth(j-c)IGBT Rth(j-c)DIODE Rth(c-h)
Conditions
min
typ
max
Unit
0.009 K/W 0.017 K/W per module, grease = 1W/m x K 0.006 K/W
For detailed mounting instructions refer to ABB Document No. 5SYA2039
Mechanical properties
Parameter Dimensions Clearance distance Surface creepage distance Weight Symbol LxW DC DSC
x
Conditions according to IEC 60664-1 Term. to base: and EN 50124-1 Term. to term: according to IEC 60664-1 Term. to base: and EN 50124-1 Term. to term:
min 23 19 33 32
typ
max
Unit mm mm mm
H Typical , see outline drawing
190 x 140 x 38
1500
g
ABB Switzerland Ltd, Semiconductors reserves the right to change specifications without notice.
Doc. No. 5SYA 1557-02 July 04 page 3 of 9
5SNA 1200E250100
Electrical configuration
Outline drawing
2)
Note: all dimensions are shown in mm
2)
For detailed mounting instructions refer to ABB Document No. 5SYA2039
This is an electrostatic sensitive device, please observe the international standard IEC 60747-1, chap. IX. This product has been designed and qualified for Industrial Level.
ABB Switzerland Ltd, Semiconductors reserves the right to change specifications without notice.
Doc. No. 5SYA 1557-02 July 04 page 4 of 9
5SNA 1200E250100
2400 2200 2000 25 C 1800 125 C 1600 1400 IC [A] 1200 1000 800 600 400 200 0 0 1 2 VCE [V] 3 4 5 VGE = 15 V IC [A]
2400 2200 2000 1800 1600 1400 1200 1000 800 600 400 200 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 VGE [V] 125 C 25 C
Fig. 1
Typical on-state characteristics, chip level
Fig. 2
Typical transfer characteristics, chip level
2400 2200 2000 1800 1600 1400 IC [A] 1200 1000 800 600 400 200 0 0 1 2 3 VCE [V] 4 5 6 9V IC [A] 17 V 15 V 13 V 11 V
2400 2200 2000 1800 1600 1400 1200 1000 800 600 400 Tvj = 25C 200 0 0 1 2 3 VCE [V] 4 5 6 Tvj = 125 C 17 V 15 V 13 V 11 V 9V
Fig. 3
Typical output characteristics, chip level
Fig. 4
Typical output characteristics, chip level
ABB Switzerland Ltd, Semiconductors reserves the right to change specifications without notice.
Doc. No. 5SYA 1557-02 July 04 page 5 of 9
5SNA 1200E250100
3.5 VCC = 1250 V RG = 1.5 ohm VGE = 15 V Tvj = 125 C L = 100 nH
6 VCC = 1250 V IC = 1200 A VGE = 15 V Tvj = 125 C L = 100 nH
3.0
5 Eon 4
2.5
Eon, Eoff [J]
2.0 Eoff 1.5
Eon, Eoff [J]
Eon 3
2 1.0 1
E sw [mJ] = 325 x 10 -6 x I C 2 + 1.31 x I C +347
Eoff
0.5
0.0 0 500 1000 IC [A] 1500 2000 2500
0 0 5 RG [ohm] 10 15
Fig. 5
Typical switching energies per pulse vs collector current
Fig. 6
Typical switching energies per pulse vs gate resistor
10
10 VCC = 1250 V IC = 1200 A VGE = 15 V Tvj = 125 C L = 100 nH
td(off)
td(off)
td(on), tr, td(off), tf [s]
1
td(on), tr, td(off), tf
tf
td(on) tr 1
td(on) 0.1 tr VCC = 1250 V RG = 1.5 ohm VGE = 15 V Tvj = 125 C L = 100 nH
tf
0.01 0 500 1000 IC [A] 1500 2000 2500
0.1 0 5 10 RG [ohm] 15 20
Fig. 7
Typical switching times vs collector current
Fig. 8
Typical switching times vs gate resistor
ABB Switzerland Ltd, Semiconductors reserves the right to change specifications without notice.
Doc. No. 5SYA 1557-02 July 04 page 6 of 9
5SNA 1200E250100
1000
20 VGE = 0 V fOSC = 1 MHz VOSC = 50 mV Cies 15 VCC = 1250 V VCC = 1800 V
100
VGE [V]
C [nF]
Coes
10
10
Cres
5
IC = 1200 A Tvj = 25 C
1 0 5 10 15 20 VCE [V] 25 30 35
0 0 2 4 6 Qg [C] 8 10 12
Fig. 9
Typical capacitances vs collector-emitter voltage
Fig. 10
Typical gate charge characteristics
2.5 VCC 1900 V, Tvj = 125 C VGE = 15 V, RG = 1.5 ohm 2
1.5 ICpulse / IC 1 0.5 Chip Module 0 0 500 1000 1500 VCE [V] 2000 2500 3000
Fig. 11
Turn-off safe operating area (RBSOA)
ABB Switzerland Ltd, Semiconductors reserves the right to change specifications without notice.
Doc. No. 5SYA 1557-02 July 04 page 7 of 9
5SNA 1200E250100
1600 1400 1200 Erec [mJ], Irr [A], Qrr [C] 1000 800 600 VCC = 1250 V RG = 1.5 ohm VGE = 15 V Tvj = 125 C L = 100 nH Qrr Irr Erec
1200 VCC = 1250 V IF = 1200 A Tvj = 125 C L = 100 nH
1800
1000
1500 Irr Qrr 1200 Irr [A], Qrr [Q]
800
RG = 1.5 ohm
Erec [mJ]
400 400 200 200
E rec [mJ] = -1.86 x 10 -4 x I F 2 + 0.903 x I F + 181 RG = 15 ohm RG = 6.8 ohm
RG = 3.9 ohm
Erec
RG = 2.7 ohm
600
RG = 1.0 ohm
900
600
300
0 0 500 1000 IF [A] 1500 2000 2500
0 0 1 2 3 4 5 6 di/dt [kA/s]
0
Fig. 12
Typical reverse recovery characteristics vs forward current
Fig. 13
Typical reverse recovery characteristics vs di/dt
2400 2200 2000 1800 1600 1400 IF [A] 1200 1000 800 125 C 25 C
2800 VCC 1900 V di/dt 8000 A/s Tvj = 125 C
2400
2000
1600 IR [A] 1200 800 400 0
0 0.5 1 VF [V] 1.5 2 2.5
600 400 200 0
0
500
1000
1500 VR [V]
2000
2500
3000
Fig. 14
Typical diode forward characteristics, chip level
Fig. 15
Safe operating area diode (SOA)
ABB Switzerland Ltd, Semiconductors reserves the right to change specifications without notice.
Doc. No. 5SYA 1557-02 July 04 page 8 of 9
5SNA 1200E250100
0.1
Analytical function for transient thermal impedance:
Zth(j-h) [K/W] IGBT, DIODE Zth(j-c) Diode 0.01 Zth(j-c) IGBT
Z th (j-c) (t) = R i (1 - e -t/ i )
i =1
2 1.685 20.4 2.92 29.3 i
IGBT
n
1 6.287 194.7 11.54 203.4
3 0.685 1.98 1.28 6.96
4 0.337 0.52 1.27 1.5
5
Ri(K/kW) i(ms) Ri(K/kW) i(ms)
0.001
0.0001 0.001 0.01 0.1 t [s] 1 10
Fig. 16
Thermal impedance vs time
ABB Switzerland Ltd, Semiconductors reserves the right to change specifications without notice.
ABB Switzerland Ltd Semiconductors Fabrikstrasse 3 CH-5600 Lenzburg, Switzerland Telephone Fax Email Internet +41 (0)58 586 1419 +41 (0)58 586 1306 abbsem@ch.abb.com www.abb.com/semiconductors
DIODE
Doc. No. 5SYA 1557-02 July 04


▲Up To Search▲   

 
Price & Availability of 5SNA1200E2501

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X